$\mathrm{C}(44)-\mathrm{N}(4)$ bond distance of $1.54(3) \AA$, and this could be the consequence of some error due to the observed disorder.

We thank Professor P. Domiano for help in preparing Fig. 1.

References

Černák, J., ChomiČ, J. \& Potoc̆N̆ĂK, I. (1988). In preparation.
Dunaj-Jurčo, M., Garaj, J., Chomič, J., Haluška, V. \& Valach, F. (1976). Proc. 6th Conf. Coord. Chem., Smolenice, pp. 45-51, CA, 90, 64844 U.
haque, H. V., Caughlan, C. N. \& Emerson, K. (1970). Inorg. Chem. 9, 2421-2424.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Jameson, G. B., Bachmann, W., Oswald, H. R. \& Dubler, E. (1981). Acta Cryst. A35, C88-C89.

Kappenstein, C., Ouali, A., Guerin, P., Černák, J. \& Chomič, J. (1988). Inorg. Chim. Acta, 147(2), 189-197.

Motherwell, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
PavelČik, F. (1986). Program XP21. Comenius Univ., Pharmaceutical Faculty, Bratislava, Czechoslovakia.
Raymond, K. N., Corfield, P. W. R. \& Ibers, J. A. (1968). Inorg. Chem. 7(4), 842-844.
Rüegg, M. \& Ludi, A. (1971). Theoret. Chim. Acta, 20, 193-202.
Sharpe, A. G. (1976). The Chemistry of the Cyano Complexes of the Transition Metals. London: Academic Press.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Simonsen, O. \& Toftlund, H. (1987). Acta Crysi. C43, 831-834.
Swink, L. N. \& Atojl, M. (1960). Acta Cryst. 13, 639-643.
XTL/E-XTL Structure Determination System (1976). Syntex Analytical Instruments, Inc., Cupertino, California, USA.

Acta Cryst. (1988). C44, 1905-1907

Structure of \{4-[2-(2-Aminoethylamino)ethylimino]pentan-2-onato$\left.\boldsymbol{N}, \boldsymbol{N}^{\prime}, \boldsymbol{N}^{\prime \prime}, O\right\}$ copper(II) Perchlorate Monohydrate

By V. Haber, J. Loub* and J. Podlahová
Department of Inorganic Chemistry, Charles University, Hlavova 8/2030, 12840 Praha 2, Czechoslovakia

and J. Kopf and E. Weiss
Department of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 2000 Hamburg 13, Federal Republic of Germany

(Received 23 March 1988; accepted 17 June 1988)

Abstract

Cu}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right)\right] \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=365 \cdot 3\), triclinic, $\quad P \mathrm{I}, \quad a=8.603$ (2), $\quad b=9.666$ (2),$\quad c=$ 9.993 (3) $\AA, \quad \alpha=77.41$ (2),$\quad \beta=67.59$ (2), $\quad \gamma=$ 80.94 (2) $^{\circ}, V=747.2$ (3) $\AA^{3}, Z=2, D_{m}=1.64$ (2), $D_{x}=1.623(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.70926 \AA, \mu=$ $1.72 \mathrm{~mm}^{-1}, \quad F(000)=378, \quad T=293 \mathrm{~K}, \quad R=0.040$, 4375 unique reflections. The structure consists of $\left[\mathrm{CuC}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$complex cations and perchlorate anions. The coordination polyhedron around Cu is a distorted square with the $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}^{-}$ligand tetradentate to the metal through one O and three N atoms.

Introduction. The study of the title compound was undertaken as part of an investigation of complexes with unsymmetrical tetradentate Schiff bases (Podlahová, Knižek, Loub \& Hašek, 1988).

[^0]0108-2701/88/111905-03\$03.00

Experimental. The complex was prepared from copper(II) perchlorate, diethylenetriamine and acetylacetone (2,5 -pentanedione) in methanolic solution in stoichiometric ratio. The solution was allowed to stand in air for a few days. Dark violet crystals were obtained, stable in air and to X-rays. Density determined by flotation method (mixture of diiodomethane and tetrachloromethane). A spherical crystal of $r=0.13 \mathrm{~mm}$ was used for the measurements. Syntex $P 2{ }_{1}$ diffractometer, graphite monochromator, 15 reflections with 2θ from 8 to 26° for measuring lattice parameters; $\omega-2 \theta$ scan; absorption ignored; max. $(\sin \theta) / \lambda=0.69 \AA^{-1}$; $h 0 \rightarrow 12, k-13 \rightarrow 13, l-13 \rightarrow 13$; three standard reflections after 97 reflections with variation $<2 \% ; 4645$ measured reflections, 4375 unique reflections, 3838 reflections used with $I \geq 1.96 \sigma(I)$; heavy-atom method; F magnitudes in full-matrix least-squares refinement; H atoms [except $\mathrm{H}_{2} \mathrm{O}(6)$] localized in theoretical positions; all positional parameters were refined with the © 1988 International Union of Crystallography
$\left[\mathrm{Cu}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right)\right] \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\times 10^{3}\right)$ with e.s.d.'s in

$U_{\text {eq }}=\left[U_{11}+U_{22}+U_{33}+2\left(U_{12} \cos \gamma+U_{13} \cos \beta+U_{23} \cos \alpha\right)\right] / 3$.				
	\boldsymbol{x}	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Cu	163.8 (3)	2179.0(2)	3108.3 (3)	35.1 (1)
Cl	3584 (1)	7798 (1)	8107 (1)	53.8 (2)
O(1)	-1748(2)	2011 (2)	4915 (2)	42.0 (5)
$\mathrm{O}(2)$	4790 (4)	7181 (5)	6961 (4)	128 (2)
$\mathrm{O}(3)$	4159 (3)	7640 (4)	9282 (3)	99 (1)
$\mathrm{O}(4)$	1993 (3)	7256 (3)	8597 (3)	80 (1)
O(5)	3381 (4)	9279 (4)	7555 (5)	106 (2)
O(6)	2397 (3)	850 (2)	4256 (2)	57 (1)
$\mathrm{N}(1)$	139 (3)	202 (2)	2748 (2)	43 (1)
$\mathrm{N}(2)$	2134 (2)	2346 (2)	1200 (2)	41 (1)
$\mathrm{N}(3)$	221 (3)	4206 (2)	2905 (2)	42 (1)
C(1)	1563 (4)	-74 (3)	1422 (3)	56 (1)
C(2)	2013 (4)	1319 (3)	368 (3)	53 (1)
C(3)	2121 (4)	3847 (3)	493 (3)	49 (1)
C(4)	1709 (4)	4751 (3)	1672 (3)	52 (1)
C(5)	-949 (3)	5028 (2)	3690 (3)	42 (1)
C(6)	-2410 (3)	4501 (3)	4872 (3)	46 (1)
C(7)	-2738 (3)	3109 (3)	5384 (2)	42 (1)
C(8)	-862 (5)	6631 (3)	3399 (4)	58 (1)
C(9)	-4377 (4)	2753 (4)	6635 (3)	64 (1)

exception of H atoms; anisotropic thermal parameters of $\mathrm{Cu}, \mathrm{Cl}, \mathrm{O}, \mathrm{N}, \mathrm{C}$ atoms and isotropic thermal parameters of H atoms (one for methylene and amine, one for methyl) were refined; $R=0.040, w R=0.045$, $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0009 F_{o}^{2}\right]$; the ratio of maximum least-squares shift to e.s.d. in the last refinement cycle -0.092 ; maximum and minimum height in final $\Delta \rho$ map 0.56 and $-0.57 \mathrm{e} \AA^{-3}$; atomic scattering factors and corrections for anomalous dispersion from International Tables for X-ray Crystallography (1974); ICL 4-72 computer; programs SHELXS86 (Sheldrick, 1986) and SHELX76 (Sheldrick, 1976).

Discussion. The final atomic parameters are given in Table 1.* Selected intramolecular bond distances and angles are given in Table 2. The complex cation drawn with program SCHAKAL86 (Keller, 1986) is depicted in Fig. 1.

In the cation, the coordination polyhedron around Cu approximates to a square formed by three N and one O atoms of the ligand. Two next-neighbouring O atoms $\left[\mathrm{O}(6), \mathrm{O}\left(4^{\mathrm{i}}\right),(\mathrm{i})=\bar{x}, 1-y, 1-z\right]$ are located at distances of 2.630 (2) and 2.886 (2) \AA respectively and therefore are considered as non-bonded. The deviations of the $\mathrm{CuN}_{3} \mathrm{O}$ core from the best plane are in the range -0.094 (2) to 0.109 (3) \AA. The deviations of the C atoms in the five-membered chelate rings from the

[^1]Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O}(1)$	$1.919(2)$	$\mathrm{C}(2)-\mathrm{N}(2)$	$1.465(4)$
$\mathrm{Cu}-\mathrm{N}(1)$	$2.025(2)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.469(3)$
$\mathrm{Cu}-\mathrm{N}(2)$	$2.006(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.520(4)$
$\mathrm{Cu}-\mathrm{N}(3)$	$1.932(2)$	$\mathrm{C}(4)-\mathrm{N}(3)$	$1.470(3)$
$\mathrm{Cl}-\mathrm{O}(2)$	$1.394(3)$	$\mathrm{N}(3)-\mathrm{C}(5)$	$1.295(3)$
$\mathrm{Cl}-\mathrm{O}(3)$	$1.410(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.429(4)$
$\mathrm{Cl}-\mathrm{O}(4)$	$1.410(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.364(3)$
$\mathrm{C}-\mathrm{O}(5)$	$1.426(3)$	$\mathrm{C}(7)-\mathrm{O}(1)$	$1.304(3)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.463(3)$	$\mathrm{C}(5)-\mathrm{C}(8)$	$1.522(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.518(4)$	$\mathrm{C}(7)-\mathrm{C}(9)$	$1.514(3)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$	$95.0(1)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.4(2)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(3)$	$95.2(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$107.9(2)$
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	$84.4(1)$	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	$116.3(2)$
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(3)$	$85.2(1)$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.9(2)$
$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(3)$	$110.2(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$	$107.1(2)$
$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(4)$	$113.0(2)$	$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(5)$	$122.7(2)$
$\mathrm{O}(2)-\mathrm{Cl}-\mathrm{O}(5)$	$107.0(3)$	$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$122.7(2)$
$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(4)$	$110.6(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$126.5(2)$
$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(5)$	$108.4(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$126.2(2)$
$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}(5)$	$107.5(2)$		

Fig. 1. A view of the $\left[\mathrm{CuC}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$complex cation.
planes $\mathrm{Cu}-\mathrm{N}(1)-\mathrm{N}(2)$ and $\mathrm{Cu}-\mathrm{N}(2)-\mathrm{N}(3)$ are 0.093 (3) and -0.540 (3) \AA for $\mathrm{C}(1)$ and $\mathrm{C}(2)$ and -0.470 (3) and 0.184 (3) \AA for C(3) and C(4). The conformation of the first ring is an unsymmetric envelope and of the second a half-chair. The deviations of the atoms in the chelate six-membered ring $\mathrm{Cu}-$ $\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$ from the best plane are in the range of -0.090 (3) (Cu) to 0.103 (2) $[\mathrm{O}(1)] \AA$. The torsion angles $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ and $\mathrm{N}(2)-$ $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$ are 49 and -49°. The largest dihedral angle between the planes considered above is 21°, between the $\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$ and $\mathrm{Cu}-\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$ planes.
Bond lengths and angles in the perchlorate anion are in the usual ranges. An inspection of the crystal packing shows that the bonding between the complex cations and the perchlorate anions is predominantly ionic. The
shortest intermolecular contact is $\mathrm{O}(1) \cdots \mathrm{O}\left(6^{\text {iii }}\right)=$ 2.789 (3) \AA, (ii) $=\bar{x}, \bar{y}, 1-z$.

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham, Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Keller, E. (1986). SCHAKAL86. Chem. Unserer Zeit, 20, 178-181.
Podlahová, J., Knižek, K., Loub, J. \& Has̆ek, J. (1988). Acta Cryst. C44, 631-633.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1988). C44, 1907-1909

Structure of Isopropylammonium cyclo-Triphosphate

By M. T. Averbuch-Pouchot, A. Durif and J. C. Guitel
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'Université Joseph Fourier, 166 X, 38042 Grenoble CEDEX, France

(Received 22 March 1988; accepted 4 July 1988)

Abstract

NH}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)\right]_{3} \mathrm{P}_{3} \mathrm{O}_{9}, \quad M_{r}=417 \cdot 27\), monoclinic, $\quad C 2, \quad a=25.22(2), \quad b=12.22(2), \quad c=$ 15.45 (2) $\AA, \beta=123.90(5)^{\circ}, V=3953(17) \AA^{3}, Z=$ $8, \quad D_{x}=1.402 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\operatorname{Mo} K \bar{\alpha})=0.7107 \AA, \quad \mu=$ $0.350 \mathrm{~mm}^{-1}, \quad F(000)=1776, \quad T=293 \mathrm{~K}$, final $R=$ 0.039 for 5327 independent reflexions. The $\mathrm{P}_{3} \mathrm{O}_{9}$ ring anions are aligned in rows parallel to the c axis. These rows arranged in an almost hexagonal way form large hexagonal channels lined by the isopropylammonium groups.

Introduction. A systematic investigation of isopropylammonium phosphates, condensed or not, has shown the existence of a monophosphate: $\left|\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N} \| \mathrm{H}_{2} \mathrm{PO}_{4}\right|$ (Averbuch-Pouchot, Durif \& Guitel, 1988a) and of a cyclo-tetraphosphate: $\left[\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right]_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot \frac{3}{2} \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, Durif \& Guitel, 1988b). In the present work we describe the chemical preparation and crystal structure of the cyclo-triphosphate.

Experimental. Crystalline samples of isopropylammonium cyclo-triphosphates have been prepared by using the metathesis reaction first described by Boulle (1938) and extensively used in organic chemistry for the preparation of water-soluble cyclo-triphosphates. To a slurry of silver cyclo-triphosphate and water, the stoichiometric amount of an aqueous solution of isopropylamine hydrochloride is slowly added:

$$
\mathrm{Ag}_{3} \mathrm{P}_{3} \mathrm{O}_{9}+3 \mathrm{C}_{3} \mathrm{H}_{10} \mathrm{NCl} \rightarrow 3 \mathrm{AgCl}+\left[\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}\right]_{3} \mathrm{P}_{3} \mathrm{O}_{9} .
$$

After removing the silver chloride by filtration, the resulting solution is kept at room temperature until formation of the crystals, which appear as pseudohexagonal thick plates. Several recrystallizations are necessary to obtain good quality crystals.

0108-2701/88/111907-03\$03.00

Density not measured. Plate fragment $0.25 \times$ $0.30 \times 0.30 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer, graphite monochromator. Systematic absences: $h k l, \quad h+k=2 n .19$ reflexions $\left(12<\theta<18^{\circ}\right)$ for refining unit-cell dimensicns. ω scan. 7386 reflexions measured $\left(3<\theta<32.5^{\circ}\right), \pm h, k, l, h_{\max }=39, k_{\max }=$ $18, l_{\max }=21$. Scan width: $1 \cdot 20^{\circ}$, scan speed between 0.02 and $0.04^{\circ} \mathrm{s}^{-1}$, total background measuring time: between 17 and 30 s .

Two orientation (426 and $4 \overline{2} 6$) and two intensity ($10,2,0$ and $\overline{10}, \overline{2}, 0$) reference reflexions, no variation. Lorentz and polarization corrections, no absorption correction. Crystal structure solved by direct methods (MULTAN; Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1977). Anisotropic full-matrix leastsquares refinement (on F) for non-hydrogen atoms, isotropic for H atoms. Unit weights. Final refinement with 5327 reflexions $\left(I>3 \sigma_{I}\right.$). Final $R=0.039$ ($w R$ $=0.039$). For the complete set of unique reflexions (6473) $R=0.049$. Extinction not refined. Max. Δ / σ $=0.26\left[\beta_{33}\right.$ of $\left.\mathrm{C}(22)\right]$. Maximum peak height in final difference Fourier map: 0.267 e $^{-3}$. $S=0.702$. Scattering factors for neutral atoms and $f^{\prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1977) SDP used for all calculations. Computer used: MicroVAX II.

Discussion. Final atomic coordinates are given in Table 1.* Two crystallographically independent $\mathrm{P}_{3} \mathrm{O}_{9}$ ring anions and six independent isopropylammonium groups

[^2]
[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of atomic coordinates and isotropic thermal parameters for H atoms, of anisotropic thermal parameters for non- H atoms and of the structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No.SUP 51153 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and distances involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51213 (53 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

